—

L0
sty
o £
N e
™ bae

-

® v

o %

4 3

a ¥

a =]
/r




N —

reeFEREE

:F
fr

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




AD-A190 328

unclessified

SELUNLY 7 CLASSIE 16 ATION U Taid BAGE (When liate Fitereu,

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFOKE COMDLETING FORM

AFGER™THC 8- 1961 [ RTINGRE

[

Y. AUTHOR(s)

¢ hne ‘”&‘-":;""°)" CE i e S TvPE OF REPORT & nmou cov:u:o
et o . ' i "~y ‘ .
. L R ) - t 1987
Detection of the number , locations |, “3%f$$ii Augus
and magnitudes of jumps s »;uringgono RLPORT NumuLh

8 CONTRACT OR GRANT NUMBER(Y)

¥.Q. Yin F49620-85-C-0008
" PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT, TASK
Center for Multivariate Analysis AREA & ¥ORK UNIT NUMBERS
Un1vers1ty of Pittsburgh (o\\C‘ZQ'
Fifth Floor Thackeray, Pittsburgh, PA 15260 A 04 A,j

- CONTROLLING OFFICE NAME AND ADORESS 13. REPQAT DATE

Air Force Office of Scientific Research August 1987
Department of the Air Porce 137 NUMBER OF PAGES
Bollimg Air-Force Base, DC 20332 Ny 12

1S. SECURITY CLASS. (of this report)

4 MONITORING ACENCY NAME 8 ADDRESS(/! dliterent Irom Controlling Oflice)

unclassified

A G-\
Q.CA»N , [i8a.70ECL aSSIFICATION, DOWNGRADING

SCHEDULE

6. OISTHIBUTION STATEMENT (of thia Reporr)

Approved for public release; distribution unlimited.

17. OISTRIBYTION STATEMENT (ol the abaizact entered in Bluch 30, 11 dilterent trom Report)

DTIC;

18, SUPPLEMENTARY NOTES o ‘?LECTE

- JAN 1 5 1988
s

— — ——
19 KEY WORODS (Continue unt reverss aide Il necessery and ideniily by dlock number)

Change points, consistency, random signals

7

b —
0 ABLTRACT (Contlnue on reveres eiae Il necessary and ideanlily by olo:h, numberj *

Consider a signal x(t) = £(t) + w(t), O i t < 1. Here the noise w(t)
an independent process, and f(t) is a function with only finitely many

This paper gives an algorithm to determine the number , locations and

jumps, satisfies a Lipschitz’ condition between any two consecutive jumps.

magnitudes of the jumps of f(t). The consistency and speeds of convergence

is

are obtained. /': i, A, ‘-/‘ s TNC YA A ,XJ’ 4.5 . c. TS }
- .'A,vn,., Torx? C_‘,OI’W’MQ;:, ) f“-"’"’"
J i
FOMM
DD law'n W73 unclassified

B

SECGBT?L us?j@ermn an T qu‘ W am Entered)



AFOSR-TR. 87-1981

DETECTION OF THE NUMBER, LOCATIONS
AND MAGNITUDES OF JUMPS =
Y.Q. Yin

Center for Multivariate Analysis
University of Pittsburgh

Center for Multivariate Analysis

University of Pittsburgh




DETECTION OF THE NUMBER, LOCATIONS
AND MAGNITUDES OF JUMPS =

Y.Q. Yin

Center for Multivariate Analysis
University of Pittsburgh

August 1987

Technical Report 87-27

Center for Multivariate Analysis
University of Pittsburgh
515 Thackeray Hall
Pittsburgh, P& 15260

’

‘ Accession Fqi___?§7p_J
. NTIS GRARI i

 DTIC TAR N
© Unannc.anced O ;
Juwtlrlcaaion__w,___~_4
S
i
BY | o s

Cotisipiovllon/

G RALE: 150 O S
nentl owoo

S

%*Research sponsored by the Air Force Office of Scientific Research (AFSC) under
contract #F49620-85-C-0008. The United States Government is authorized to
reproduce and distribute reprints for governmental purposes notwithstanding

any copyright notation hereon.




pr—

A —
v ¢

-y

DETECTION OF THE NUMBER, LOCATIONS
AND MAGNITUDES OF JUMPS

Y. Q. YIN

§1. Introduction. Jump detection or change-point detection is a very im-
portant problem in statistics and engineering. The problem can be stated in the
following way:

Let z(t) = f(t) + w(t) be a stochastic process, 0 <t < 1. Here w(t) is the
noise process, Ew(t) = 0, and f(t) = Ez(t) is a function with only finitely many
discontinuities ¢,,--- t;. Suppose these discontinuities are all interior points of
[0,1] and for each ¢ = 1,--- g, f(¢t; +0), f(t; — 0) exist and f(¢; +0) # f(¢: —0).
For definiteness, we suppose f is left continuous everywhere. Our problem is to
estimate
1. the number ¢ of discontinuities,

2. the positions ¢y, - , ¢y of these discontinuities;
3. the magnitudes f(¢; +0) — f(¢; — 0) of the jumps,i=1,---,¢;
based on a sample z(f—t), k=0,1,---n.

In this paper, under mild conditions, we will give an algorithm to estimate
g, 1. e. , define an estimator § of ¢. For each ¢t = 1,... ¢, we give an algorithm to
estimate the position of the ith discontinuity point ¢;, i. e. , define an estimator
t; of t;; we also define an estimator D, ; for the jump at the ith discontinuity
point. ’

We will prove that all these estimators are strongly consistent, or in other

words, these estimators converge to the corresponding parameters as n, the

number of sample points, tends to infinity, with probability one.
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We also get the speed of convergence, for example for ¢; we get

6~ ti| =0 (Mﬁ)

n

for any a > 0.
The complexity of computation of our algorithms is O(nlogn)
approximately.
The basic hypotheses are two:
1. w(t) is a gaussian white noise.
2. There exists a positive constant K > 0, such that

[f(t) — f(s)] < K|t —sl, if no t; are in [s, ¢!

.
4

The condition 1. can be relaxed to nongaussian white noises, but it would
be difficult to relax 2.

In Section 2, we define the algorithms. In Section 3 we give the proofs.

Works on this topic mostly concentrate on the single jump problem, see the
references listed at the rear of this paper. Especially no work has been done on

the case when the number of jumps is unknown.
J

Acknowledgment. The author sincerely appreciates the encouragement and
financial support of Dr. Krishnaiah, director of the Center for Multivariate

Analysis, University of Pittsburgh.

§2. The Mechod lor Detecting the Change Points. Let z(t) = 5iij — wi¢)

be a stochastic process, 0 < ¢t < 1. Here w(t) is a Gaussian white noise. f(t) =
Ez(t) has only finitely many discontinuities t;,--- ,¢,. All these discontinuities

are in (0,1) and of the first kind, i. e., f(¢; + C), f(¢; — 0) exist for i = 1,...,q.
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Besides, suppose that there is a constant K > 0 such that |f(s) = f(t)| < K s—t
for any interval {s,t] C [0, 1] not containing any discontinuities. Let
di = f(t: +0) — f(t: = 0) #0, t=1,--,q,
and suppose
|d1| > |da| > -+ > |dq|, and if |d;| = ld;|, and 7 < j. then i; < ¢;.
Let m = m(n) T oo, m/n — 0. Define
s(5h) + o+ (M) a(BFh) + -+ 2(55R)

n

an =

m m
form<k<n-m.

mn
" nhy
niteness, let h, = (Ingn/Inyn)/3, m, = Inn(inan)*/3(Ingn)'/® where In; n =

Let h, be a2 sequence of positive numbers, h, — 0

Y
1AInn,{ingn = In;(Ing_; n).

Define
k
I, = argmax{]anl - ;hn},
k
I, = arom(ix{ank[ - r_zhn k=1 > 4m} ,
k
Iz = arvmax{]an] - ;hn t|k—I|>4mand |k - I} > 4m}

If the definition is not unique. we choose the smallest one. At first, we state the
main theorem, which will be proved in Section 3

Theorem 3.1. (1) H—; - t,-| < %’lﬂ for all large n,a.s,1=1,---,q.
(2) Dpy, —» diya.s,i=1,---,q.
(3) Dpy, = O(hy,), a.s. for i > q.

We see from this theorem that the quantities defined abova are strengly
consistent estimators of the change points ¢y, - ,t,; and tae magnituces J, ol

changements. Furthermore we get the convergence rate

-—, for large n, a. s.

Lo




from (1).
Theorem 3.1 does not supply a method to estimate the integer q, explicitly.
But based on Theorem 3.1, we can construct a strongly consistent estimator of

q in the following manner.

Let

1 1
(4) Gk = '2—k+_11D"'Jk+ll+'QTEID"»’k+2!+"'+kCn'

Here ¢, > 0 with the properties ¢, — 0 and h,/c, — 0. Let
Ggn = arg mkin Gok.
Suppose we have proved Theorem 3.1. We are going to prove

Theorem 2.1. §, — ¢, a. s.

Proof. If k < ¢, then, almost surely, as n — oo

1

1 1 ‘
Gur — G >—————’Dn1k+,]+"'+——’Dn1,g——5;

" = gk+11 29 d
1

1,
+ (k - q)cn — Wldk+1( R Eidq; > 0,

hn

by (2) of Theorem 3.1. That means ¢, # & for large n.
If £ > g, then, noticing !Dy,;,| 1, as t 7, by (3} of Theorem 3.1, we have for

a constant C > 0,

Gnk —Gng = BPTES ;Dnl.,¢l ';_ 2k Dy - (k= qjen
1 (-
> _E nl, .oy o 'l’)c’l
C Chp
> —2—qhn + (L - (I)Cn =Cn ((k - q) - 2q-l?>
1
> cni(k - ‘1) >0




for n sufficiently large, almost surely. In this case §n, # k either. So, almost

surely, for n sufficiently large, §, = ¢.

§3. Proof of the Main Theorem. At first we prove an elementary lemma.

Lemma. Suppose f(¢) is defined in the interval {ty —a,t; +a) for a positive
number a. Suppose f(to=0) exist and are finite. Let I, and m,, be two sequences

of positive integers such that I, /n — to, m,/n — 0, m, — oco. Let

An=~%<f(1_nm)+---+f(1;1)
-y o),

where I = I,,, m = my,. Then, from linminf[.»lnl > (f(to +0) — f(to — 0)/, we
—_— 00
can deduce that 4, — f(to +0) — f(to — 0).

Proof. Without loss of generality, suppose % < tg for all n. Let
k
kn:maz{k:-{—L <to,05k5m}.
n

Fix € >0, 26 > Osuch that to — 6 <t <tg = [f(t) — f(to —0) < ¢, and
to<t<to+8 = |f(t) - f(to +0)] <e.

on

Let N be such that as n > .V, I;’; —to] <

[N

, < z.So,as n >N

x>

An<—f(to—0)+f+(f(to—0)+f)‘n%+<1—‘;;n) (f(to +0) = ¢)
= (1-5) ¢+ 0 - 10— o) + 2.
In the same way
A [ kn N a, . ]
n > (1 Yy (F{to +0) = f(to = 0)) - 2e.
Thus,
|Anl £ ‘1 - an"—'[ if{to +0) — f(to — 0)] + 2e.

5




Therefore we must have '7‘;'; — 0, thus A, — f(to +0) — f(to — 0).

Theorem 3.1. (1) |Ix/n — tx] < 22, for all large n, a. 5., for k =1,--- ,¢;
(2) Dpy, — dg, a.s.,fork=1,---,q;
(3) Dny, = O(hy), a.s., for k > gq.
Proof. 1. In this part, we prove ]% -—tl] < QT’" for all large n, a. s.
Introduce the following notations
A= {f (5 ++ ("*’" Pom P+ 7 (5]
Wi = 5 {w (“‘)+ w (552)},
Wi = {w(3) + +W(’° =)}
Let k be such that }k/n —t| = mkm \k/n —t1], k depends only on n.

?rﬁ

At first, we note that for |k/n — t1| > 2m/n,
(4) P (1D, = Ehp <Dk = Ehy)
<P (lagl - lAk1+(k ")h < W+ W+ W v

Because ]% —t1] > %, the points k;m,'n ,L‘—;—l-, k—::—l, , k‘nm are all on

the same side of ¢;. If n is larger than some nonrandom number N, > O, for

any k with |t; — £ > 2 the interval [knm, k+m] can contain at most one

discontinuous point t;. There are three possibilities:

(@) Yot n 152, K22),

(b) t; € [k; , ] il , then t,>t1,andk>k,
(c) t: € [z, Tld|<|d]

For case (a) above,

1A;] > |d,| —21\'% 1A < KT

S0,

m+1 k—k

( | , 1.
IA}-¢|— n 2 | 1[“31\ oy - m hn >.§idl Y

for n > N2 > 0, N2 is a nonrandom constant.

6




For case (b},
A5l 2 idi| - 2K, Akl < ldi| + 2K,

so, for a constant ¢ > 0,
.~k
k=K > —41{%

Azl = 1Akl +
+ (t; ~t1)hn + 0o(hn) > chp

when n > N3 > 0, N3 is nonrandom, ¢ is a positive constant.

For case (c),
. o (k—k , ,
Az — 1A+ '(_—Tlhn > |dy{ — Idi] + o(1)
> S(1di] = 1dil) > 0

when n > Ny > 0, N4 is nonrandom.
Thus, for n > maz(N, N2, N3, N4), and for some constants ¢; > 0, ¢y > 0,

P )
P(1Dusl - hn < 1Dnsd = Eh )

S 4P (blhn S

m
< 4P (%hn\/ﬁ < 2sl)

S bzc-—bg Inninan b n—bg lnan

1
) , m = Inn(lnz n)*3(Ingn)t >, Here by, by, bz are

. . — [Insn
if we choose h, = (—L—mz -
positive constants, Iny z = Ininz, Ins z = In!nz. Thus, the series
. k . k ok 2m
Z P<{Dn;c| — —h, < Dpk, — —hy,,for some k with' - — ¢} > —
n n n
n
<3S np|{iD ~1—§h < Dkl ~ ~hn | <
- i nk n n = l nkj n n Bl
n
7
- -




By Borel-Cantelli Lemma,
k
P(EN,s.t.n >N, |= -t > 2m
n

k k
= anJ;! — —rzhn > ]ani — ;}I.n> =1

or,

>

: k
P(E,N,s.t.n 2 N,an,»c[ - ;l—hn S {an! - —/Ln
n

v 2
LN
n n

= 1.

N——

~

Lhe 2 !D = %hns

n nal

Since |Dy,p, | —

I 2
P (E;V,s.t.n >N =— l—l ~tll < —77—Z> =1,
n i n
This proves case k =1 for (1).
By

-

I, .k
ID"-Il, - 7{}]'77- 2 !Dn/::i - ;hn

we havc

iminf D, | > ld L

So, by the clementary lemma, we get Dpy, — d; a. s.

2. In this part we prove 'f—; -t < %"— for all large n, a. s.. and D.y, -~ d,
a.s., if 2 <1< q. But we carry out the proof only for the case ¢ = 2.
. ; k ,
Let k£ be such that ‘f ~to! = mkin[— — tol, and suppose k is such that
n
:% -ty 2—’:" and ,:—‘ —ta > 'T’;" Suppose for these & and &, D . - 751‘/:,; <

!Dpgl — fh,,, so that

! k—l:: ' - | 4+ ityr — |
8g] = 1Akl + T ha SV + WL+ WL+ W

8




2m 1 k
n

Since !-E—td > =0 S —ta| > 2—:1, t; and t; are not in the interval »k';l ,

3N,; > 0 nonrandom, such that as n > N, [1:1—'", i‘;—mj contains at most one

discontinuity point. There are thrce possibilities:

(a) No t; in [L—n—'ﬁ, kemy

n

(b) t; € [’c m k=m! g = lda!, of course ¢ > 2, t; > to.

n

() Em %ﬂ’:d1)< d"l

For (a), we have

2m 2m
Al > 1dol - K22, jay < K22,
n n
and then as n > N, N, nonrandom,
, k- k 4Km 1
(Al — A= hn 2 |da) - —hn 2 5ids

For (b),

and as n > N3, N3 nonrandom, we have

4
AL~ A+ = SR, > ~K— +
n n

4
<—Kn;: + bt =ty + 0(1)> h, > bh,,

AV

for constant b > 0.
For case (c), just in the same way, we can show that as n > Ny, Ny

nonrandom,

k—
B = 1A+

k 1., .,
Izn_>_§(,l-_»f—i(1,;)>0

therefore as n > maz(.Vy,.Va, Nz, NVy),

I, '0

P(.Dn;;; By < Dol - ﬁhn)
n

e e A !
AP (byh, < (LTI Em
| m

AP(b:hn\/ m < ‘::) < bzn—b‘, lnz n

3
|/\

A
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for positive constants b; ba, b>. Here vy, ,vm, 2 have the same meanings as

before.

Thercfore the series

k
ZP<IDHK! - b < 1Dl = e,

.k 2
for some k with |— —t;] > kddd
n

3

k 2m
and |— —t2] > — ) < cc.
n n

Thus

k Ok
P(E.’V n>N = iancE — —}ln > Ean{ — —h,
n
2m

for all k with I—— -t > e

2
and [fu— —tal > ﬁ) =1.
n n

Suppose the event in the last P( ) is true, and |-’nL —t;] < 2% is true for large

n. Then, [k - I}| = n|§ — Li>n(te— 1] — 35 — E2) > 4m, il n is large. So,
[Dn1ﬂ|—~*h >Dil=-= hn,and'—=~t1]§ o ri%— 2l < =2 for large n
a. s. But[’—;’-’—h] |Lﬂ —-]-L—tll %—%—Zsz,so;%—tg'Szy’:‘ for

large n a. s.

From |Dpp,| — %hn >|D, il —

hn,\\e have liminf Dy, > 'd2 . By the

n—oo
lemma, we must have D,;, — d2, 2. s.

3. In this part we prove that Dpp ., = D(hny, a. s, By deiinition.

I — L >4m,i=1,...,q for sufficiently large n, a. s. Thus, in this case,.
q+1 t ’ ’ »q ) ’

Igyr _, | 4m _2m _2m
n ! n n n




Therefore in IL"‘;‘"‘, """;‘"‘] there are no discontinuity points, so

anl

q+1

| <AL+ W T+ W

2m
< K—n— +Wr L+ W

I,,+1 !’

and
ZP(JDM.,“! > hn)
< ZP(hn < 1(2—;"- + Wi+ iw,;“[)
< bzn:nP (blhn < ”—‘-*—m—+-'-’—’"-f>
<bY_ nP(byv/mhy < |2}) < co.
Therefore

anI,,+l| = O(hn), a. S.

11
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